Environmental Epidemiology Program, UDOH

Who We Are
• CDC-funded state partner with the federal Agency for Toxic Substances and Disease Registry (ATSDR)/Centers for Disease Control and Prevention (CDC)

What We Do
• Provide health assessments-evaluation of community exposures to hazardous contaminants
 – Mandated for all National Priorities List sites in accordance with CERCLA (Superfund)
 – Upon request
 o Regulators (EPA, UDEQ)
 o Local Health Departments
 o Governor’s Office
 – Upon public petition
Environmental Epidemiology Program

We Can Provide

• Independent, objective health impact evaluations based upon the best available science and data

• Health education to minimize exposure

• Recommendations to the EPA, UDEQ, and other regulatory and public health agencies for further actions

We Cannot Provide

• Remediation or “site clean-up”

• Legal advice

• Enforcement of regulatory standards

• Medical attention or health care services
Stericycle Medical Waste Incinerator

- Constructed in the early 1990s (~1992)
 - Residential development began roughly 10 years later (late 2003, early 2004)

- Disposes of medical waste primarily from the Pacific coast and intermountain states

- The incinerator and neighboring residential areas occupy three census tracts
 - Combined 2010 population of 19,653
Dear Mr. Hines:

I live in Tooele in North Salt Lake and have been here 3 years. I am complaining to you about a place named Stericycle at 90 North 1100 West in North Salt Lake.

Every morning except Sunday, at about 1:30 AM and for about 2½ hours, they burn medical waste and the pollution and smell are terrible. I know this is not healthy for me and all the families with many young children who have homes here. It wakes me up every night and I can smell it and see it through my window. It keeps me up all night long and I don't feel good in the morning. It makes me sad to think about it. I'd like to be able to sleep through the night, enjoy fresh air, and not awake every morning with a headache.” –retired Health Department employee.
The Utah Division of Air Quality (UDAQ) identified multiple operating permit violations occurring between 2011 and 2013:

- Emissions exceeding the permit limits for dioxins, NO$_x$, and HCl
- Failure to report these emission exceedances to UDAQ in the requisite time frame
- Failure to maintain normal operating conditions during the December 2011 stack test
- Failure to include the test results demonstrating these emission exceedances in the requisite annual and semi-annual monitoring reports
Community Health Concerns

Photo courtesy of blog.utahmomsforcleanair.org
Health Concerns

“I looked out my backyard, and I see the huge black smoke coming out of their bypass stack. That was going out into our neighborhood for 20 minutes, and that has no filters. You know we’re breathing that, and it had huge flames coming out of the stack,” “That’s one more incident after another. We’re very concerned.” –Area resident

“What little toxicity assessment has been made of the safety of Stericycle’s emission has only examined exposures of one compound at a time.”

-Utah environmental activism group
Health Concerns

• Incineration of waste has been widely practiced but inadequate incineration or the incineration of unsuitable materials results in the release of pollutants into the air and of ash residue. Incinerated materials containing chlorine can generate dioxins and furans, which are human carcinogens and have been associated with a range of adverse health effects. **Incineration of heavy metals or materials with high metal content (in particular lead, mercury and cadmium) can lead to the spread of toxic metals in the environment. Dioxins, furans and metals are persistent and bio-accumulate in the environment.** Materials containing chlorine or metal should therefore not be incinerated. -World Health Organization Fact Sheet 253, Nov. 2011

• A number of toxic air pollutants, including dioxins, mercury, lead, and cadmium, are released into the air during the incineration process- EPA Hospital/Medical/Infectious Waste Incinerators Final rule published September 15, 1997
Dioxins in Medical Waste

- Medical Waste Source: mainly PVC
- Formed @ 400-500°C
- Dioxin incineration\(^1\): 0.78ng/g newspaper; 8,490ng/g PVC
- Destroyed @ 850°C and up\(^1,2\)
 Stericycle NSL facility averages 950°C\(^3\)
- Environmental half-life in soil: 1-3 years on surface; up to 12 years below surface

1 Shibamoto et al. 2007 Rev. Environ Contam Toxicol 190:1-41
3 UDEQ/EPA Performance Test Report, 11/24/14
Heavy Metals in Medical Waste

- Cadmium (Cd) sources in MW: dyes for plastics “red bags”; Cd-containing batteries; some medical devices

- Mercury (Hg) sources in MW: medical devices (thermometers, sphygmomanometers, esophageal bougies).

- Lead (Pb) sources in MW: Pb-containing batteries, radiation shielding (aprons), paint dyes, autoclave indicator tape.

- Cd, Hg, and Pb, are not destroyed during incineration.

- Environmental half-life in soil: Persistent
Initiatives to Reduce Dioxins and Heavy Metals from Medical Waste

• 1994 - EPA’s Dioxin Reassessment identifies MWI as single largest source of dioxin air pollution
• 1997 - EPA’s Mercury Report to Congress - MWIs identified as major source of Hg emission
• 1997 - EPA’s Final Rule for MWI Emissions (identifies dioxins, Hg, Cd, and Pb as MWI pollutants)
• 1998 - EPA launches Hospitals for a Healthy Environment (H2E)
• National organizations and state governments establish initiatives to raise awareness and reduce Hg, Cd, Pb, and PVC in medical waste stream
 – Pediatric Environmental Health Specialty Unit (PEHSU), PracticeGreenhealth, Healthcare Env. Res. Center (HERC), Health Care Without Harm, Sustainable Hospitals Program, etc.
 – UDEQ Pollution Prevention (electronics recycling: Hg, Cd, and Pb)
 – UPCC Mercury Reduction
Mercury Emissions from Medical Waste Incinerators

Exhibit 1. Anthropogenic mercury emissions in the U.S. by source category, 1990–2011

National Emissions Inventory Database, 2014
Online on EPA’s “Report on the Environment (ROE) website.
Hg Exposure = 15µg/L

Cd Exposure = 5µg/L

Pb Exposure = 5µg/dL

Exhibit 3. Blood cadmium concentrations for the U.S. population age 1 year and older by age group, 1999–2012

Exhibit 3. Blood lead concentrations for the U.S. population age 1 year and older by age group, 1999–2012

Data source: CDC, 2014
Medical Waste Incineration

Poor Incineration (<850°C)
- Cd, Pb, HgCl₂,
- NOₓ, HCl, PM, SO₂, CO
- ↑Dioxin
- "Waste"

Proper Incineration (≥850°C)
- Cd, Pb, HgCl₂,
- ↓Dioxin, NOₓ, HCl, PM, SO₂, CO
- "Waste"

Proper Incineration (≥850°C)
- NOₓ, HCl, PM,
- SO₂, CO,
- ↓↓↓Dioxin
- "Waste"
Toxicological Assessment

Are sample values higher than health-based comparison values (CVs)?

No → This substance is not expected to present a health hazard

Yes → Are calculated exposure doses higher than established health guideline values? (ATSDR MRLs; EPA RfDs, etc.)

No → This substance is not expected to present a health hazard

Yes →

• Specifics of the contaminant must be assessed.
• Substance may present a health hazard to the community.
• Form recommendations for action.
Toxicological Assessment

Exposure calculations include:

- Type of contaminant
- Amount of contaminant
- Type of exposure (ingestion, inhalation, dermal)
- Intake rates
- Duration of exposure (everyday, recreational, etc.)

Calculations made for adults and children
Soil Exposure Pathway

Contaminants of concern in soil

• Dioxins and dioxin-like compounds
 – Dioxins, furans, dioxin-like polychlorinated biphenyls (PCBs)

• Heavy metals (RCRA 8)
 – Arsenic
 – Barium
 – Cadmium
 – Chromium
 – Lead
 – Mercury
 – Selenium
 – Silver
Soil Sampling

• DCHD collected 6 soil samples in October 2013
 – 5 samples within the predicted extent of the emission deposition plume
 – 1 control sample collected 23 miles away to the north-northwest
 – All samples from undeveloped land
 – Analyzed for dioxin content

• The EEP collected 6 soil samples in November 2013
 – 3 soil samples from residential backyards
 – 1 soil sample from the Caleb Dr. playground
 – 1 sand sample from the Caleb Dr.
 – 1 sand sample from Buckingham Dr. playgrounds
 – Analyzed for dioxin and heavy metal content
Plume Deposition Analysis

• At EEP request, UDAQ modeled the deposition of contaminants released from the incinerator to identify optimal areas for soil sampling

• Based on:
 – AERMOD modeling system version 13350
 – Predicted maximum emission outputs for a 20-year period
 – Stack characteristics and testing data
 – Emission temperature and velocity
 – A 5-year historical record of meteorology recorded near the site
Predicted Contaminant Deposition Gradient

- Modeling indicated that the highest deposition would occur roughly 110 meters north-northwest of the incinerator
 - Contaminant deposition is predicted to decline further from the facility
DCHD Sampling

Red marker: Stericycle incinerator
Green markers: Sample sites
Yellow marker: Control site

<table>
<thead>
<tr>
<th></th>
<th>Dioxins (TEQ) (ppt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child c-EMEG</td>
<td>50</td>
</tr>
<tr>
<td>Pica Child i-EMEG</td>
<td>40</td>
</tr>
<tr>
<td>Adult c-EMEG</td>
<td>700</td>
</tr>
<tr>
<td>EPA Carcinogenic Screening Level</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>1.64</td>
</tr>
<tr>
<td>2</td>
<td>0.86</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
</tr>
<tr>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td>5</td>
<td>1.14</td>
</tr>
<tr>
<td>Off-site “Control”</td>
<td>0.17</td>
</tr>
</tbody>
</table>
EEP Sampling
EEP Sampling

<table>
<thead>
<tr>
<th>Substance (ppm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D (Soil)</th>
<th>D (Sand)</th>
<th>E (Sand)</th>
<th>Cancer Screening Value</th>
<th>Child CV</th>
<th>Pica Child CV</th>
<th>Adult CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><8.5</td>
<td>9.4</td>
<td><7.3</td>
<td><7.7</td>
<td>20.8</td>
<td><7.2</td>
<td>0.47 15 10 (a-EMEG)</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>130.4</td>
<td>151.5</td>
<td>129.5</td>
<td>122.5</td>
<td>44.6</td>
<td>47.7</td>
<td>N/A 10,000 400 140,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td><1.7</td>
<td><1.6</td>
<td><1.5</td>
<td><1.5</td>
<td><1.4</td>
<td><1.4</td>
<td>2,100 5 1 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chromium</td>
<td>17.1</td>
<td>16.9</td>
<td>16.9</td>
<td>17.8</td>
<td>6.8</td>
<td>4.9</td>
<td>N/A 45* 10* 630*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>15.9</td>
<td>16.3</td>
<td>19.7</td>
<td>17.7</td>
<td><7.1</td>
<td><7.2</td>
<td>N/A 400 (TSCA) 400 (TSCA) 400 (TSCA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td><0.06</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>N/A 15 14 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td><8.5</td>
<td><8.1</td>
<td><7.3</td>
<td><7.7</td>
<td><7.1</td>
<td><7.2</td>
<td>N/A 250 NA 3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td><1.7</td>
<td><1.6</td>
<td><1.5</td>
<td><1.5</td>
<td><1.4</td>
<td><1.4</td>
<td>N/A 250 (RMEG) NA 3,500 (RMEG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxins (TEQ)</td>
<td>2.6</td>
<td>2.6</td>
<td>0.62</td>
<td>1.2</td>
<td>0.05</td>
<td>0.06</td>
<td>4.8 50 40 700</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Chromium CVs are for hexavalent Cr(VI) chromium

Comparison Values

EMEG: Environmental media evaluation guide
- **a-EMEG**: Acute EMEG (14 days or fewer)
- **i-EMEG**: Intermediate EMEG (14 to 365 days)
- **c-EMEG**: Chronic EMEG (over 365 days)

RMEG: Reference media evaluation guide

TSCA: Toxic Substances Control Act

Red marker: Stericycle incinerator
Dark blue markers: Residential sample sites
Light blue markers: Playground sample sites
Soil-Pica Behavior

• The recurrent ingestion of unusually high amounts of soil
 – 1,000 – 5,000 mg/day vs. 200 mg/day for a typical child

• Relatively rare condition
 – Information on prevalence is very limited

• Higher risk groups include children under 6 years of age and developmentally delayed individuals
Arsenic Exposure Doses

Minimal risk level (MRL): an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse, non-cancer health effects over a specific time period

- **Acute:** 14 days or fewer
- **Chronic:** greater than 365 days

<table>
<thead>
<tr>
<th>Arsenic (ppm)</th>
<th>Exposure Route</th>
<th>Adult Exposure Dose (mg/kg/day)</th>
<th>Child Exposure Dose (mg/kg/day)</th>
<th>Soil-Pica Child Exposure Dose (mg/kg/day)</th>
<th>Acute MRL (mg/kg/day)</th>
<th>Chronic MRL (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.8</td>
<td>Ingestion</td>
<td>1.46E-05</td>
<td>1.28E-04</td>
<td>3.20E-03</td>
<td>5.00E-03</td>
<td>3.00E-04</td>
</tr>
<tr>
<td></td>
<td>Dermal</td>
<td>5.22E-06</td>
<td>1.55E-05</td>
<td>1.55E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.98E-05</td>
<td>1.44E-04</td>
<td>3.22E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure assumptions:

- 180 days per year of exposure to sand from the Caleb Dr. playground
- Ingestion
 - Children: 200 mg sand/day
 - Children with soil-pica: 5,000 mg sand/day
 - Adults: 100 mg sand/day

70 year cancer risk: **6.22E-05**

- About 6 excess cases in 100,000 exposed people
MRLs

MRLs and RELs

- An estimate of the daily human exposure to a substance that is not expected to result in risk of adverse, non-cancer health effects over a specific time period (i.e., acute, intermediate, chronic)

- Exceeding an MRL/REL does not necessarily indicate an adverse health effects will occur, rather, it provides guidance for health professionals as they treat exposed individuals

- Never based on serious health effects or cancer outcomes
 - Based on “no observable adverse effect level” or “least observable adverse effect level”

- Based on human studies when available
 - Based on animal studies if human data is insufficient

- When a study adequately identifies a chemical’s “no effect” or “least effect” dosage, then that dosage is divided by uncertainty factors (UF) to protect the most sensitive individuals in a population (infants, pregnant women, those with chronic health conditions, etc.)
 - UF can range from 10 (well-designed human studies) to 3,000 (well-designed animal studies with data gaps)
Arsenic Exposure Doses

• The calculated exposure dose for soil-pica children exceeded the chronic MRL. Is this a potential health hazard?

• **1.40E-02 mg/kg/day**: dose associated with cancers related to chronic oral exposure

• **2.00E-03 mg/kg/day**: chronic threshold dose for skin pigment darkening

• **3.00E-04 mg/kg/day**: MRL
 – based upon study of Taiwanese farmers exposed to arsenic in drinking water. At the dosage of 8.00E-04 mg/kg/day no observed adverse health effects resulted from long-term exposure.
 – UF of 3 (rounded up)

• **3.22E-03 mg/kg/day**: the highest calculated dosage for playground sand

• Conservative (protective) exposure assumptions:
 – 25 times greater intake than a typical child’s, every day for half a year
 – All soil intake for each of those days is playground sand from the Caleb Dr. playground
Chromium Exposure Doses

Minimal risk level (MRL):
- **Intermediate:** 14 – 365 days
- **Chronic:** greater than 365 days

<table>
<thead>
<tr>
<th>Total Chromium (ppm)</th>
<th>Exposure Route</th>
<th>Adult Exposure Dose (mg/kg/day)</th>
<th>Child Exposure Dose (mg/kg/day)</th>
<th>Soil-Pica Child Exposure Dose (mg/kg/day)</th>
<th>Cr(VI) Intermediate MRL (mg/kg/day)</th>
<th>Cr(VI) Chronic MRL (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.8</td>
<td>Ingestion</td>
<td>1.25E-05</td>
<td>1.10E-04</td>
<td>2.74E-03</td>
<td>5.00E-03</td>
<td>9.00E-04</td>
</tr>
<tr>
<td></td>
<td>Dermal</td>
<td>4.47E-06</td>
<td>1.32E-05</td>
<td>1.32E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.70E-05</td>
<td>1.23E-04</td>
<td>2.75E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ppm: Parts per million
mg/kg/day: Milligrams of substance per kilogram body weight per day

Exposure assumptions:
- 180 days per year of exposure to residential soil
- All chromium in the soil is in the hexavalent Cr(VI) form
- Ingestion
 - **Children:** 200 mg soil/day
 - **Children with soil-pica:** 5,000 mg soil/day
 - **Adults:** 100 mg soil/day
The calculated exposure dose for soil-pica children exceeded the chronic MRL. Is this a potential health hazard?

9.00E-04 mg/kg/day: MRL
- based on benchmark dose of 0.09 mg/kg/day associated with a 10% increase in the probability of cell proliferation in the small intestine of female mice after 2 years of exposure
- UF of 100

2.75E-03 mg/kg/day: highest calculated exposure dosage for soil-pica child

Conservative exposure assumptions:
- 25 times greater intake than a typical child’s, every day for half a year
- All chromium in the soil is in the toxic hexavalent Cr(VI) form
 - Most or all is likely to be in the far less harmful trivalent Cr(III) form

Chromium can be detected in hair, blood and urine. Elevated levels may indicate an exposure, however, as Cr(III) is an essential nutrient, it can’t be used to predict if there are potential adverse health effects.
Soil Sampling Results

- Soil and sand concentrations of barium, mercury, selenium, silver, and dioxins did not exceed the applicable CVs
 - Not expected to harm people’s health

- Soil lead levels were low and did not exceed the CV
 - However, the best available science indicates that there is no safe level of lead exposure, particularly for children
Soil Sampling Results

• The concentration of arsenic in sand from the Caleb Dr. playground exceeded the chronic CV for children
 – The sand likely originated from off-site
 – Exposure dose calculations indicate a potential risk for soil-pica children
 – Exposure dose calculations do not indicate a health risk for children

• Concentrations of total chromium in the 4 residential soil samples exceeded the Cr(VI) intermediate CV for children with soil-pica behavior
 – Exposure dose calculations indicate a potential risk for soil-pica children
 – Exposure dose calculations do not indicate a health risk for children
 – The exact composition of the total chromium is unknown, but most is likely to be the less toxic trivalent state

• USGS sampling data indicates that arsenic and total chromium levels in residential soil are similar to background levels for the region
Plume Deposition Analysis

• At EEP’s request, UDAQ modeled the deposition of contaminants released from the incinerator to determine annual air concentrations of pollutants emitted from Stericycle

• Based on:
 – AERMOD modeling system version 13350
 – Predicted maximum emission outputs for a 20-year period
 – Stack characteristics and testing data
 – Emission temperature and velocity
 – A 5-year historical record of meteorology recorded near the site

• NOTE: For air assessment, the same values is used for CVs and MRLs
Predicted Airborne Contaminant Gradient

- Modeling indicated that the highest air concentrations would occur roughly 110 meters north-northwest of the incinerator
 - Contaminant air concentrations are predicted to decline further from the facility
Maximum Predicted Air Concentrations

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Based on:</th>
<th>Highest Predicted Residential Air Concentration (µg/m³)</th>
<th>Cancer CV (µg/m³)</th>
<th>Non-Cancer CV (µg/m³)</th>
<th>CV Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>Emissions Limit</td>
<td>7.60E-03</td>
<td>5.60E-04</td>
<td>1.00E-02</td>
<td>ATSDR CREG; ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Max Measured</td>
<td>1.40E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>Emissions Limit</td>
<td>2.21</td>
<td>NA</td>
<td>10,000</td>
<td>NAAQS 8-Hour Primary Standard</td>
</tr>
<tr>
<td>Dioxins (TEQ)</td>
<td>Emissions Limit</td>
<td>1.49E-07</td>
<td></td>
<td></td>
<td>EPA Regional Screening Levels</td>
</tr>
<tr>
<td>Dioxins (TEQ)</td>
<td>Max Measured</td>
<td>1.95E-08</td>
<td>6.40E-08</td>
<td>4.20E-05</td>
<td></td>
</tr>
<tr>
<td>Dioxins (TEQ)</td>
<td>Permit Violation</td>
<td>7.59E-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>Emissions Limit</td>
<td>7.25</td>
<td>NA</td>
<td>20</td>
<td>EPA Reference Concentration</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>Permit Violation</td>
<td>10.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Emissions Limit</td>
<td>0.057</td>
<td>NA</td>
<td>0.15</td>
<td>NAAQS 3 Month Avg. Primary Standard</td>
</tr>
<tr>
<td>Mercury</td>
<td>Emissions Limit</td>
<td>0.026</td>
<td>NA</td>
<td>0.2</td>
<td>ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>Emissions Limit</td>
<td>22.83</td>
<td>NA</td>
<td>99.73</td>
<td>NAAQS NO₂ Annual Primary Standard</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>Permit Violation</td>
<td>40.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>Emissions Limit</td>
<td>1.64</td>
<td>NA</td>
<td>150</td>
<td>NAAQS PM₁₀ 24-Hour Primary Standard</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>Emissions Limit</td>
<td>0.034</td>
<td>NA</td>
<td>26</td>
<td>ATSDR Acute EMEG</td>
</tr>
</tbody>
</table>

Emissions Limit: Modeling based on the permitted emissions limit

Max Measured: Modeling based on the highest non-violation measured emissions

Permit Violation: Modeling based on the highest emissions measured during the period of permit violation

CVs
- **CREG:** Cancer risk evaluation guide
- **EMEG:** Environmental media evaluation guide
- **NAAQS:** National ambient air quality standard
Air Exposures Modeling Results

- The maximum predicted residential air concentrations of carbon monoxide, hydrogen chloride, lead, mercury, nitrogen oxides, particulate matter, and sulfur dioxide did not exceed the CVs
 - Not expected to harm people’s health
 - Based on operating permit emissions limits

- The maximum predicted residential air concentrations of hydrogen chloride and nitrogen oxides during the periods of permit violation did not exceed the CVs
Air Modeling Results: Cadmium

• Modeling based on the permitted emissions limit indicates that the maximum air concentration may exceed the cancer-based CV

• The highest measured cadmium emission was over 50 times lower than the limit
 – The maximum air concentration based on this value does not exceed the CVs, and is not expected to harm people’s health

• New air quality regulations effective October 2014 reduce the permitted cadmium emission level and eliminate this potential issue
Compliance with New Emission Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Test Frequency (years)</th>
<th>Test Date</th>
<th>Result</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (mg/dscm)</td>
<td>5</td>
<td>10/18/2006</td>
<td>0.001</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>0.001</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>0.003</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.0003</td>
<td>0.04</td>
</tr>
<tr>
<td>Carbon Monoxide (ppmdv)</td>
<td>3</td>
<td>11/11/2009</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11/8/2012</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/10/2013</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.2</td>
<td>11</td>
</tr>
<tr>
<td>Dioxins/Furans (ng/dscm)</td>
<td>5</td>
<td>10/18/2006</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>616.4</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/15/2012</td>
<td>2</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Dioxins/Furans (TEQ) (ng/dscm)</td>
<td>5</td>
<td>10/18/2006</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>11.7</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/15/2012</td>
<td>0.1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>0.3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.0088</td>
<td>0.54</td>
</tr>
<tr>
<td>Hydrogen Chloride (ppmdv)</td>
<td>3</td>
<td>11/11/2009</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11/8/2012</td>
<td>0.03</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>143.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/10/2013</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.1</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Compliance with New Emission Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Test Frequency (years)</th>
<th>Test Date</th>
<th>Result</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (mg/dscm)</td>
<td>5</td>
<td>10/18/2006</td>
<td>0.004</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>0.001</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>0.02</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>0.0003</td>
<td>0.036</td>
</tr>
<tr>
<td>Mercury (mg/dscm)</td>
<td>5</td>
<td>10/18/2006</td>
<td>0.004</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>0.04</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>0.005</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/4/2014</td>
<td>0.001</td>
<td>0.018</td>
</tr>
<tr>
<td>Nitrogen Oxides (ppmdv)</td>
<td>5</td>
<td>10/18/2006</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>336</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/13/2012</td>
<td>438</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>122</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/10/2013</td>
<td>177</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>116</td>
<td>140</td>
</tr>
<tr>
<td>Particulate Matter (mg/dscm)</td>
<td>3</td>
<td>11/11/2009</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11/8/2012</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Sulfur Dioxide (ppmdv)</td>
<td>5</td>
<td>10/18/2006</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12/28/2011</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/25/2013</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10/1/2014</td>
<td>1.8</td>
<td>9</td>
</tr>
</tbody>
</table>
Air Modeling Results: Dioxins/Furans

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Stack Concentration (µg/m³) a</th>
<th>Maximum Predicted Residential Air Concentration (µg/m³)</th>
<th>Carcinogenic RSL</th>
<th>Non-Carcinogenic RSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Dioxins TEQ b</td>
<td>3.00E-04</td>
<td>1.95E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Dioxins Old Permit Limit TEQ c</td>
<td>2.30E-03</td>
<td>1.49E-07</td>
<td>7.40E-08</td>
<td>4.20E-05</td>
</tr>
<tr>
<td>3) Dioxins Violation TEQ d</td>
<td>1.17E-02</td>
<td>7.60E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Current Dioxin TEQ (2014) e</td>
<td>8.8E-06</td>
<td>5.72E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Current Dioxin Permit Limit TEQ (2014) f</td>
<td>5.40E-05</td>
<td>3.50E-09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concentration of dioxin at the Stericycle incinerator stack.
- The highest non-violation measured dioxin emission pre-2014.
- The maximum dioxin emission limit listed in Stericycle’s previous operating.
- Dioxin emission when Stericycle was in violation of their operating permit.
- Most current dioxin sampling data (2014-)
- Maximum dioxin emission limit listed in Stericycle’s current permit

- **Cancer risk: 2.52E-06** (about 2.5 excess cases in 1,000,000 exposed people)
 - Total time: 11 years (2003 – 2014)
 - Assumptions
 - Emissions at the maximum permit violating level for 6 years (2006 – 2012)
 - Emissions at the highest measured non-violation level for the remaining 5 years
Cumulative Site Contaminant Cancer Risk

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Estimated Cancer Risk</th>
<th>EPA excess cancer target risk range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxin (air/inhalation) - 11 years (2003-2014)</td>
<td>2.52E-06</td>
<td>1.0E-04 to 1.0E-06</td>
</tr>
<tr>
<td>Arsenic (soil/ingestion and dermal) - lifetime</td>
<td>6.22E-05</td>
<td>(1 in 10,000 to 1 in 1,000,000)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.47E-05</td>
<td></td>
</tr>
</tbody>
</table>
Exposure to Multiple Contaminants

Highest Reported Values including Violations

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Highest Reported Stack Test</th>
<th>Highest Modeled Residential Concentration (µg/m³)</th>
<th>Non-Cancer CV (µg/m³)</th>
<th>Hazard Quotient (HQ) [Conc./CV]</th>
<th>CV Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (1/25/13)</td>
<td>0.003 (mg/dscm)</td>
<td>0.00012</td>
<td>0.01</td>
<td>0.012</td>
<td>ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Carbon Monoxide (11/11/09)</td>
<td>20 (ppmdv)</td>
<td>1.11</td>
<td>10,000</td>
<td>0.0001</td>
<td>NAAQS 8-Hour Primary Standard</td>
</tr>
<tr>
<td>Dioxins/Furans TEQ(^V) (12/28/11)</td>
<td>11.7 (ng/dscm)</td>
<td>0.000000076</td>
<td>0.00004</td>
<td>0.018</td>
<td>CalEPA Chronic REL</td>
</tr>
<tr>
<td>Hydrogen Chloride(^V) (1/25/13)</td>
<td>143.4 (ppmdv)</td>
<td>10.4</td>
<td>20</td>
<td>0.519</td>
<td>EPA RfC</td>
</tr>
<tr>
<td>Lead (1/25/13)</td>
<td>0.02 (mg/dscm)</td>
<td>0.00088</td>
<td>0.15</td>
<td>0.006</td>
<td>NAAQS 3 Month Avg. Primary Standard</td>
</tr>
<tr>
<td>Mercury (12/28/2011)</td>
<td>0.04 (mg/dscm)</td>
<td>0.0013</td>
<td>0.2</td>
<td>0.006</td>
<td>ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Nitrogen Oxides(^V) (9/13/12)</td>
<td>438 (ppmdv)</td>
<td>40.1</td>
<td>99.73</td>
<td>0.402</td>
<td>NAAQS NO(_2) Annual Primary Standard</td>
</tr>
<tr>
<td>Particulate Matter (11/8/12)</td>
<td>25 (mg/dscm)</td>
<td>1.02</td>
<td>150</td>
<td>0.007</td>
<td>NAAQS PM(_{10}) 24-Hour Primary Standard</td>
</tr>
<tr>
<td>Sulfur Dioxide (1/25/13)</td>
<td>10 (ppmdv)</td>
<td>1.15</td>
<td>26</td>
<td>0.044</td>
<td>ATSDR Acute EMEG</td>
</tr>
</tbody>
</table>

V: violation
mg: milligram
dscm: dry standard cubic meter (m³)
ng: nanograms
µg: micrograms
EMEG: environmental media evaluation guide

\(^V\): violation
m³: cubic meter
ppmdv: parts per million dry volume
NAAQS: national ambient air quality standard
REL: reference exposure level
RfC: reference concentration
ATSDR: Agency for Toxic Substances and Disease Registry
CalEPA: California Environmental Protection Agency
EPA: Environmental Protection Agency
NAAQS: National Ambient Air Quality Standard
UTAH DEPARTMENT OF HEALTH

Hazard Index (HI) [Contaminants with HQ ≥ 0.1]

<table>
<thead>
<tr>
<th>Hazard Index (HI)</th>
<th>0.92</th>
</tr>
</thead>
</table>

The Hazard Index (HI) calculates the total risk from exposure to multiple contaminants by summing the Hazard Quotients (HQs) of each contaminant. A HI of 0.92 indicates a significant risk level.
Exposure to Multiple Contaminants

Current Stack Test Data (after Oct. 2014)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Highest Reported Stack Test</th>
<th>Highest Modeled Residential Concentration (µg/m³)</th>
<th>Non-Cancer CV (µg/m³)</th>
<th>Hazard Quotient (HQ)</th>
<th>CV Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.0003 (mg/dscm)</td>
<td>0.000013</td>
<td>0.01</td>
<td>0.001</td>
<td>ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>0.2 (ppmdv)</td>
<td>0.053</td>
<td>10,000</td>
<td>0.000005</td>
<td>NAAQS 8-Hour Primary Standard</td>
</tr>
<tr>
<td>Dioxins/Furans TEQ</td>
<td>0.0088 (ng/dscm)</td>
<td>0.000000000078</td>
<td>0.00004</td>
<td>0.000018</td>
<td>CalEPA Chronic REL</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>0.1 (ppmdv)</td>
<td>0.0084</td>
<td>20</td>
<td>0.0004</td>
<td>EPA RfC</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0003 (mg/dscm)</td>
<td>0.000018</td>
<td>0.15</td>
<td>0.0001</td>
<td>NAAQS 3 Month Avg. Primary Standard</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.001 (mg/dscm)</td>
<td>0.000047</td>
<td>0.2</td>
<td>0.0002</td>
<td>ATSDR Chronic EMEG</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>116 (ppmdv)</td>
<td>10.4</td>
<td>99.73</td>
<td>0.105</td>
<td>NAAQS NO₂ Annual Primary Standard</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>4 (mg/dscm)</td>
<td>0.18</td>
<td>150</td>
<td>0.001</td>
<td>NAAQS PM₁₀ 24-Hour Primary Standard</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>1.8 (ppmdv)</td>
<td>0.00067</td>
<td>26</td>
<td>0.0007</td>
<td>ATSDR Acute EMEG</td>
</tr>
</tbody>
</table>

Hazard Index (HI) [Contaminants with HQ ≥ 0.1] 0.11

- **V:** violation
- **mg:** milligram
- **dscm:** dry standard cubic meter (m³)
- **ng:** nanograms
- **µg:** micrograms
- **EMEG:** environmental media evaluation guide
- **NAAQS:** national ambient air quality standard
- **REL:** reference exposure level
- **RfC:** reference concentration
Bypass Events

- Malfunction or power outage that may result in severe damage to the facility if emissions are not diverted to a bypass stack
- Emissions from the incinerator are vented directly to the atmosphere
- Emissions still pass through secondary combustion chamber removing some, but not all, emissions
- Feed is shut off to the incinerator, contents allowed to burn out
- Events are random and the content of the incinerator is variable
- Sampling is not feasible due to high temperatures of stack emissions
- Realistic assessment difficult to accurately predict

Photo courtesy of KUER
Bypass Events
Based upon EPA Emissions Factors, 1993

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Maximum Predicted Residential Air Concentration (µg/m³)</th>
<th>Acute Exposure Health Comparison Values (µg/m³)</th>
<th>Source</th>
<th>NIOSH IDLH Acute Exposure Level (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>77.43</td>
<td>188</td>
<td>NAAQS 1-hour Primary Standard</td>
<td>37,600</td>
</tr>
<tr>
<td>PM/PM10</td>
<td>101.58</td>
<td>150</td>
<td>NAAQS 24-hour Primary Standard</td>
<td>5,000 a</td>
</tr>
<tr>
<td>SO₂</td>
<td>47.2</td>
<td>26</td>
<td>ATSDR Acute MRL</td>
<td>262,000</td>
</tr>
<tr>
<td>CO</td>
<td>2.18</td>
<td>40,250</td>
<td>NAAQS 1-hour Primary Standard</td>
<td>1,380,000</td>
</tr>
<tr>
<td>VOC</td>
<td>6.5</td>
<td>29 b</td>
<td>ATSDR Acute MRL Benzene</td>
<td>1,595,000</td>
</tr>
<tr>
<td>Lead</td>
<td>1.58</td>
<td>0.15</td>
<td>NAAQS 3-month Primary Standard</td>
<td>100,000</td>
</tr>
<tr>
<td>Hydrogen Chloride</td>
<td>728.65</td>
<td>2,100</td>
<td>CalEPA Acute REL</td>
<td>74,500</td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>3.24</td>
<td>16</td>
<td>ATSDR Acute MRL</td>
<td>24,600</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.12</td>
<td>0.03</td>
<td>ATSDR Acute MRL</td>
<td>9,000</td>
</tr>
<tr>
<td>Mercury - total (elemental + inorganic compounds)</td>
<td>2.33</td>
<td>0.6 c</td>
<td>CalEPA Acute REL</td>
<td>10,000</td>
</tr>
<tr>
<td>Mercury - elemental</td>
<td>0.47</td>
<td>0.6 c</td>
<td>CalEPA Acute REL</td>
<td>10,000</td>
</tr>
<tr>
<td>Dioxins/Furans</td>
<td>1.34E-05</td>
<td>4.20E-05</td>
<td>CalEPA Chronic REL/RfC d</td>
<td>NA</td>
</tr>
</tbody>
</table>

a No IDLH available, listed value is OSHA 8-hour time-weighted average
b Benzene values used for evaluation of general VOCs
c The CalEPA REL is based on elemental mercury exposures
d No acute health comparison or IDLH value available

Acronyms:
IDLH: immediately dangerous to life or health
NAAQS: national ambient air quality standard
REL: reference exposure level
MRL: minimal risk level
Bypass Events

• MRLs and RELs
 – An estimate of the daily human exposure to a substance that is not expected to result in risk of adverse, non-cancer health effects over a specific time period (i.e., acute, intermediate, chronic)

 – Exceeding an MRL/REL does not necessarily indicate an adverse health effects will occur, rather, it provides guidance for health professionals as they treat exposed individuals

 – Never based on serious health effects or cancer outcomes
 o Based on “no observable adverse effect level” or “least observable adverse effect level”

 – Based on human studies when available
 o Based on animal studies if human data is insufficient

 – When a study adequately identifies a chemical’s “no effect” or “least effect” dosage, then that dosage is divided by uncertainty factors (UF) to protect the most sensitive individuals in a population (infants, pregnant women, those with chronic health conditions, etc.)
 o UFs can range from 10 (well-designed human studies) to 3,000 (well-designed animal studies with data gaps)
Mercury Exposures from Bypass Events

• Mercury
 – REL based on study of offspring of pregnant rats exposed to Hg vapors during pregnancy
 – 1,800 µg/m³ for 1 hour/day for six days (Foxboro bypass exposure calculated as 2.33 µg/m³, duration ~20 minutes)
 – Effect in rat pups observed as decreased motor activity at 3 months of age
 – Hg effect gone when retested at 14 months of age
 – REL UF of 3,000

• Considerations
 – EPA EFs established in 1993 (prior to Hg reduction initiatives)
 – 80-98% of Hg incinerator emissions are HgCl₂ (poorly absorbed, far less toxic)¹

• Conclusions
 – EEP calculations likely overestimate elemental Hg emissions
 – Unlikely that adverse health effects will occur due to Hg in bypass smoke

• Hg readily detected in urine samples; half-life ~55days

¹ EPA, 1997; ATSDR 1999; Pichtel, 2010
Cadmium Exposures from Bypass Events

- **Cadmium**
 - MRL based on study of rats exposed to cadmium vapors
 - 88 µg/m³ for 6 hours/day, 5 days/week, for two weeks (Foxboro bypass exposure calculated as 0.12 µg/m³, duration ~20 minutes)
 - Rats developed mild inflammation in lungs (measured by increased numbers of macrophage cells).
 - MRL UF of 300

- **Considerations**
 - EPA EFs established in 1993 (prior to Cd reduction initiatives)

- **Conclusions**
 - EEP calculations likely overestimate elemental Cd emissions
 - Unlikely that adverse health effects will occur due to Cd in bypass smoke

- **Cd readily detected in blood (recent exposures) and urine (shows recent and cumulative exposures); half-life ~6-38 years; smokers have roughly twice the body Cd of non-smokers**
Lead Exposures from Bypass Events

• Lead
 – No established MRL
 – Available CV is NAAQS 3-month average (bypass exposure ~20 minutes)
 – OSHA 8-hour time-weighted average (TWA) lead action level is 30 µg/m³ (indicates need for surveillance, monitoring, and hazard education for worker)
 – EEP divided OSHA value by a UF of 10 to be protective of most sensitive individuals (3 µg/m³). Foxboro exposure calculated as 1.58 µg/m³ for event duration

• Considerations
 – EPA EFs established in 1993 (prior to Pb reduction initiatives)

• Conclusions
 – EEP calculations likely overestimate elemental Pb emissions
 – Unlikely that adverse health effects will occur due to Pb in bypass smoke
Lead Exposures Continued

• **No Safe Level of Lead**
 – Exposures to high levels of lead or low levels for long periods
 ‒ Mental and physical growth affected
 ‒ Adverse birth outcomes (premature, small, low birth weight)
 ‒ Learning difficulties

• **EPA’s Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK)**

<table>
<thead>
<tr>
<th>Lead Exposure Route</th>
<th>Lead Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Soil</td>
<td>19.7 ppm</td>
</tr>
<tr>
<td>Indoor Dust</td>
<td>23.8 ppm</td>
</tr>
<tr>
<td>Food</td>
<td>1.95 - 2.26 µg/day (default)</td>
</tr>
<tr>
<td>Water</td>
<td>4 µg/L; 0.20 - 0.59 L/day (default)</td>
</tr>
<tr>
<td>Air</td>
<td>0.1 µg/m³ (default)</td>
</tr>
<tr>
<td>Geometric Mean BLL (0 - 60 months old)</td>
<td>1.03 µg/dL</td>
</tr>
<tr>
<td>Percent above 5.0 µg/dL (0 - 60 months old)</td>
<td>0.038%</td>
</tr>
</tbody>
</table>

• **CDC considers blood lead levels (BLLs) values above 5 µg/dL as excessive**
Sulfur Dioxide Exposures from Bypass Events

• Sulfur Dioxide
 – MRL based on human subjects (asthmatics)
 – Subjects exposed to 262 µg/m³ for 10 minutes during moderate exercise (Foxboro bypass exposure calculated at 47.2 µg/m³)
 – Subjects developed slight bronchoconstriction (increased airway resistance). Subjects did not develop wheezing or shortness of breath
 – MRL UF of 10

• Conclusions
 – The most sensitive individuals (those with existing respiratory disorders) may experience bronchoconstriction and/or nose, throat, and lung irritation
Limitations

• Air studies assess only the Stericycle incinerator. There are multiple pollutant sources in this area including petroleum refineries, factories, and high traffic freeways. These factors may alter the overall health risks associated with a particular pollutant or combination of pollutants.

• Air modeling is based upon facility dimensions, meteorological data, and historic stack-test data. Many factors, including variance in facility operation practice, could result in over- or underestimation of true annual air pollutant concentrations.

• Bypass event pollution estimates are further limited by lack of actual sampling data and rely on 1993 EPA assumptions of the most likely waste content and incineration by-products generated by this type of incinerator.
Adverse Birth Outcomes Statistical Review

- Reviewed the incidence of adverse birth outcomes in the study area between 1991 and 2012
 - Low birth weight, prematurity, infant death, and small-for-gestational-age

- No evidence was found to indicate that the risk for these adverse birth outcomes was higher for the study area than the rest of Utah

Map of South Davis County. The study area is outlined, and the location of the Stericycle incinerator is shown with a red star.
Cancer Incidence Statistical Review

• Reviewed the incidence of all 42 cancer categories in the study area between 1976 and 2011
 – Colon cancer, anal cancer among women, bone and joint cancer, cutaneous melanoma, breast cancer, and prostate cancer were elevated in the last analytical period (2006 – 2011)
 o These may indicate emerging clusters, or they could be random variation in the data.
 o Breast cancer was elevated for the last two analytical periods (2000 – 2011)
 o A historical cluster of prostate cancer was also detected (1988 – 1999)
 – These types of cancer are typically not associated with environmental exposures
 o They are linked more with behavioral and genetic factors
 – The elevated cancer types are often preventable
 o Making healthy life choices is always encouraged, such as smoking cessation, maintaining a healthy diet and weight, avoiding excessive sun exposure, and getting enough physical exercise
Conclusions

- Soil exposures to analyzed dioxins and heavy metals are not expected to result in adverse health effects.

- Based on the available CVs, inhalation exposure to dioxins released from the Stericycle medical waste incinerator is not expected to result in adverse, non-cancer health effects. While modeled residential exposures to dioxins during Stericycle’s violation of their operating permit exceeded the cancer-based RSL, cumulative exposure from the first development of the neighboring community to 2014 is not expected to result in substantial excess cancer risk.

- Based upon the highest recorded stack testing data, exposure to the mixture of chemicals emitted from the incinerator stack is not expected to result in adverse health effects.

- Compliance with new emissions regulations, effective as of October 2014, are expected to be adequately protective of human health for both cancer and non-cancer adverse health effects.
Conclusions

- Excess cancer risks from all contaminants that exceeded cancer-based CVs at this site (arsenic in soil and dioxins in air) are not expected to result in significant excess cancer risk.

- Exposures to bypass event smoke plumes may result in minor adverse health effects for those with severe respiratory disorders and should be reduced as much as possible.

- Elevation of certain cancer types were found in the study area that includes the Foxboro neighborhood. However, these cancer types are not associated with environmental contaminants, but rather are strongly linked to genetics and lifestyle choices.

- No evidence was found to indicate that the risk for adverse birth outcomes was higher for the study area than the rest of Utah.
Recommendations

• Limit children's’ hand-to-mouth behavior when playing in playgrounds
• Limit children's’ exposure to lead containing material
• Avoid exposure to bypass smoke
 – Move indoors if you may be in direct contact with a smoke plume outdoors
 – Close windows and doors once indoors
 – Turn off non-filtering air-handling devices that bring outdoor air inside (window fans, window A/C units, evaporative coolers) until the smoke plume dissipates
 – Regularly maintain all home heating, ventilation, and air conditioning (HVAC) filters
 – Consider a portable home air purifier unit with carbon and HEPA filtration
 – The community (residents and Stericycle) should consider establishing a notification system alerting residents in real-time of bypass events (e.g., text alerts)
Recommendations

• Make healthy life choices for yourself and your children
 – Major causes of chronic disease (heart disease, diabetes, cancer)¹
 o Obesity/overweight/poor nutrition
 o Tobacco use/smoking
 o Excessive alcohol use
 o Lack of exercise
 – Healthy life choices decrease the adverse impacts of environmental pollutants²

• Take action to protect your mental health
 – All major causes of chronic disease life choices are affected by stress, anxiety, and depression³

¹CDC Chronic Disease and Health Promotion website.
²Hennig et al. Enviro. Health Pers. 120, 6, June 2012; Murphy et al. Env. Sci Pollut. Res. Int. 2015 Jan 15., many more
³Perry et al. Am J Public Health, v.100 (12):2337-2339; CDC sources; WHO Sources;
Contact Information

Phone number: (801) 538-6191
Email: APPLETREE@utah.gov
Comment period for these documents will close November 5th, 2015
url: http://health.utah.gov/enviroepi/appletree/SouthDavisCounty

Environmental Epidemiology Program
Utah Department of Health
PO Box 142104
Salt Lake City, Utah 84114